(0) Obligation:

Clauses:

flatten(atom(X), .(X, [])).
flatten(cons(atom(X), U), .(X, Y)) :- flatten(U, Y).
flatten(cons(cons(U, V), W), X) :- flatten(cons(U, cons(V, W)), X).

Query: flatten(g,a)

(1) PrologToDTProblemTransformerProof (SOUND transformation)

Built DT problem from termination graph DT10.

(2) Obligation:

Triples:

flattenA(cons(atom(X1), cons(atom(X2), X3)), .(X1, .(X2, X4))) :- flattenA(X3, X4).
flattenA(cons(atom(X1), cons(cons(X2, X3), X4)), .(X1, X5)) :- flattenA(cons(X2, cons(X3, X4)), X5).
flattenA(cons(cons(atom(X1), X2), X3), .(X1, X4)) :- flattenA(cons(X2, X3), X4).
flattenA(cons(cons(cons(X1, X2), X3), X4), X5) :- flattenA(cons(X1, cons(X2, cons(X3, X4))), X5).

Clauses:

flattencA(atom(X1), .(X1, [])).
flattencA(cons(atom(X1), atom(X2)), .(X1, .(X2, []))).
flattencA(cons(atom(X1), cons(atom(X2), X3)), .(X1, .(X2, X4))) :- flattencA(X3, X4).
flattencA(cons(atom(X1), cons(cons(X2, X3), X4)), .(X1, X5)) :- flattencA(cons(X2, cons(X3, X4)), X5).
flattencA(cons(cons(atom(X1), X2), X3), .(X1, X4)) :- flattencA(cons(X2, X3), X4).
flattencA(cons(cons(cons(X1, X2), X3), X4), X5) :- flattencA(cons(X1, cons(X2, cons(X3, X4))), X5).

Afs:

flattenA(x1, x2)  =  flattenA(x1)

(3) TriplesToPiDPProof (SOUND transformation)

We use the technique of [DT09]. With regard to the inferred argument filtering the predicates were used in the following modes:
flattenA_in: (b,f)
Transforming TRIPLES into the following Term Rewriting System:
Pi DP problem:
The TRS P consists of the following rules:

FLATTENA_IN_GA(cons(atom(X1), cons(atom(X2), X3)), .(X1, .(X2, X4))) → U1_GA(X1, X2, X3, X4, flattenA_in_ga(X3, X4))
FLATTENA_IN_GA(cons(atom(X1), cons(atom(X2), X3)), .(X1, .(X2, X4))) → FLATTENA_IN_GA(X3, X4)
FLATTENA_IN_GA(cons(atom(X1), cons(cons(X2, X3), X4)), .(X1, X5)) → U2_GA(X1, X2, X3, X4, X5, flattenA_in_ga(cons(X2, cons(X3, X4)), X5))
FLATTENA_IN_GA(cons(atom(X1), cons(cons(X2, X3), X4)), .(X1, X5)) → FLATTENA_IN_GA(cons(X2, cons(X3, X4)), X5)
FLATTENA_IN_GA(cons(cons(atom(X1), X2), X3), .(X1, X4)) → U3_GA(X1, X2, X3, X4, flattenA_in_ga(cons(X2, X3), X4))
FLATTENA_IN_GA(cons(cons(atom(X1), X2), X3), .(X1, X4)) → FLATTENA_IN_GA(cons(X2, X3), X4)
FLATTENA_IN_GA(cons(cons(cons(X1, X2), X3), X4), X5) → U4_GA(X1, X2, X3, X4, X5, flattenA_in_ga(cons(X1, cons(X2, cons(X3, X4))), X5))
FLATTENA_IN_GA(cons(cons(cons(X1, X2), X3), X4), X5) → FLATTENA_IN_GA(cons(X1, cons(X2, cons(X3, X4))), X5)

R is empty.
The argument filtering Pi contains the following mapping:
flattenA_in_ga(x1, x2)  =  flattenA_in_ga(x1)
cons(x1, x2)  =  cons(x1, x2)
atom(x1)  =  atom(x1)
.(x1, x2)  =  .(x1, x2)
FLATTENA_IN_GA(x1, x2)  =  FLATTENA_IN_GA(x1)
U1_GA(x1, x2, x3, x4, x5)  =  U1_GA(x1, x2, x3, x5)
U2_GA(x1, x2, x3, x4, x5, x6)  =  U2_GA(x1, x2, x3, x4, x6)
U3_GA(x1, x2, x3, x4, x5)  =  U3_GA(x1, x2, x3, x5)
U4_GA(x1, x2, x3, x4, x5, x6)  =  U4_GA(x1, x2, x3, x4, x6)

We have to consider all (P,R,Pi)-chains

Infinitary Constructor Rewriting Termination of PiDP implies Termination of TRIPLES

(4) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

FLATTENA_IN_GA(cons(atom(X1), cons(atom(X2), X3)), .(X1, .(X2, X4))) → U1_GA(X1, X2, X3, X4, flattenA_in_ga(X3, X4))
FLATTENA_IN_GA(cons(atom(X1), cons(atom(X2), X3)), .(X1, .(X2, X4))) → FLATTENA_IN_GA(X3, X4)
FLATTENA_IN_GA(cons(atom(X1), cons(cons(X2, X3), X4)), .(X1, X5)) → U2_GA(X1, X2, X3, X4, X5, flattenA_in_ga(cons(X2, cons(X3, X4)), X5))
FLATTENA_IN_GA(cons(atom(X1), cons(cons(X2, X3), X4)), .(X1, X5)) → FLATTENA_IN_GA(cons(X2, cons(X3, X4)), X5)
FLATTENA_IN_GA(cons(cons(atom(X1), X2), X3), .(X1, X4)) → U3_GA(X1, X2, X3, X4, flattenA_in_ga(cons(X2, X3), X4))
FLATTENA_IN_GA(cons(cons(atom(X1), X2), X3), .(X1, X4)) → FLATTENA_IN_GA(cons(X2, X3), X4)
FLATTENA_IN_GA(cons(cons(cons(X1, X2), X3), X4), X5) → U4_GA(X1, X2, X3, X4, X5, flattenA_in_ga(cons(X1, cons(X2, cons(X3, X4))), X5))
FLATTENA_IN_GA(cons(cons(cons(X1, X2), X3), X4), X5) → FLATTENA_IN_GA(cons(X1, cons(X2, cons(X3, X4))), X5)

R is empty.
The argument filtering Pi contains the following mapping:
flattenA_in_ga(x1, x2)  =  flattenA_in_ga(x1)
cons(x1, x2)  =  cons(x1, x2)
atom(x1)  =  atom(x1)
.(x1, x2)  =  .(x1, x2)
FLATTENA_IN_GA(x1, x2)  =  FLATTENA_IN_GA(x1)
U1_GA(x1, x2, x3, x4, x5)  =  U1_GA(x1, x2, x3, x5)
U2_GA(x1, x2, x3, x4, x5, x6)  =  U2_GA(x1, x2, x3, x4, x6)
U3_GA(x1, x2, x3, x4, x5)  =  U3_GA(x1, x2, x3, x5)
U4_GA(x1, x2, x3, x4, x5, x6)  =  U4_GA(x1, x2, x3, x4, x6)

We have to consider all (P,R,Pi)-chains

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 4 less nodes.

(6) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

FLATTENA_IN_GA(cons(atom(X1), cons(cons(X2, X3), X4)), .(X1, X5)) → FLATTENA_IN_GA(cons(X2, cons(X3, X4)), X5)
FLATTENA_IN_GA(cons(atom(X1), cons(atom(X2), X3)), .(X1, .(X2, X4))) → FLATTENA_IN_GA(X3, X4)
FLATTENA_IN_GA(cons(cons(atom(X1), X2), X3), .(X1, X4)) → FLATTENA_IN_GA(cons(X2, X3), X4)
FLATTENA_IN_GA(cons(cons(cons(X1, X2), X3), X4), X5) → FLATTENA_IN_GA(cons(X1, cons(X2, cons(X3, X4))), X5)

R is empty.
The argument filtering Pi contains the following mapping:
cons(x1, x2)  =  cons(x1, x2)
atom(x1)  =  atom(x1)
.(x1, x2)  =  .(x1, x2)
FLATTENA_IN_GA(x1, x2)  =  FLATTENA_IN_GA(x1)

We have to consider all (P,R,Pi)-chains

(7) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(8) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FLATTENA_IN_GA(cons(atom(X1), cons(cons(X2, X3), X4))) → FLATTENA_IN_GA(cons(X2, cons(X3, X4)))
FLATTENA_IN_GA(cons(atom(X1), cons(atom(X2), X3))) → FLATTENA_IN_GA(X3)
FLATTENA_IN_GA(cons(cons(atom(X1), X2), X3)) → FLATTENA_IN_GA(cons(X2, X3))
FLATTENA_IN_GA(cons(cons(cons(X1, X2), X3), X4)) → FLATTENA_IN_GA(cons(X1, cons(X2, cons(X3, X4))))

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(9) UsableRulesReductionPairsProof (EQUIVALENT transformation)

By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.

The following dependency pairs can be deleted:

FLATTENA_IN_GA(cons(atom(X1), cons(cons(X2, X3), X4))) → FLATTENA_IN_GA(cons(X2, cons(X3, X4)))
FLATTENA_IN_GA(cons(atom(X1), cons(atom(X2), X3))) → FLATTENA_IN_GA(X3)
FLATTENA_IN_GA(cons(cons(atom(X1), X2), X3)) → FLATTENA_IN_GA(cons(X2, X3))
No rules are removed from R.

Used ordering: POLO with Polynomial interpretation [POLO]:

POL(FLATTENA_IN_GA(x1)) = 2·x1   
POL(atom(x1)) = x1   
POL(cons(x1, x2)) = x1 + x2   

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FLATTENA_IN_GA(cons(cons(cons(X1, X2), X3), X4)) → FLATTENA_IN_GA(cons(X1, cons(X2, cons(X3, X4))))

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(11) MRRProof (EQUIVALENT transformation)

By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

FLATTENA_IN_GA(cons(cons(cons(X1, X2), X3), X4)) → FLATTENA_IN_GA(cons(X1, cons(X2, cons(X3, X4))))


Used ordering: Polynomial interpretation [POLO]:

POL(FLATTENA_IN_GA(x1)) = 2·x1   
POL(cons(x1, x2)) = 2 + 2·x1 + x2   

(12) Obligation:

Q DP problem:
P is empty.
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(13) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(14) YES